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Fig. 5.7 Grid points for two space. dimensions

5.6.1 Explicit difference schemes

Using (5.32) and (5.155), the explicit difference schemes for (5.152) can be
written as ‘

G(pdupt! = r(3 2482w}, (5.156)

where },, is an approximate value of U7,
The most commonly used explicit scheme is obtained as the first approxi-
mation to (5.156). For example, the explicit difference scheme

gt = r(i+8)u; , (5.157)
or “;';:‘ = (1—-4r)uj,+r Uy ettt m U U i)
has the order of accuracy (k-+h43). '
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Using the Von-Neumann method of stability analysis, we look for solution
u?, of the form

up,, = AE" exp (i0,lh) exp (i6,mh), (5.158)
to the explicit difference equation (5.157). We find
£ =1-4 (31112 'h+51 G%h) (5.159)

For stability | £ | < 1 and so

—1<1-4r (sm2 +si 20;") <1
Since 0 < sin? 0,4/2, sin? 0,h/2 < 1, the stability conditien is obtained
as 0 < r < 1/4. This method has the advantage of being simple and easy
to apply. The restriction of small k(k < #%*4) usually requires a very large
number of time steps. We gan improve the stability condition if we write
(5.157) as

urtl = (14-r82)(1+r82)uy (5.160)

The addition of the term r28252u?, does not affect the order of accuracy of
(5.157) as it is of higher order than the difference scheme. The formula
(5.160) is of order (k+42) and the stability conditionis 0 < r < 1/2. Thus
the addition of the term r28282u,  in (5.157) results in improving the stabi-
lity requirements without any loss of the order of accuracy of the difference
scheme. For r = 1/6, the difference scheme (5.160) has order of accuracy
(k2+h%). In order to obtain the unconditionally stable explicit difference
scheme we introduce the Larkin modification into (5.157). We consider the
following formulas:

P+rFt it = r(32+82)ur, (5.161)
and Pl = r(As+ At = p(82482)un . (5.162)

substituting (5.158) into (5.161) and simplifying, we obtain

¢ - 1—=2r+r(exp (i0,h)+exp (i6,h))
T 14+2r—r(exp (—i0ih)+exp (—if,h))

(5.163)

We denote the numerator and denominator of the right side of (5.163) by
N and D respectively. The imaginary parts of N and D are identical. Thus
the absolute value of N/D will be less than or equal to unity provided the
following condition is satisfied,

[Re(D))?—[Re(N)]> = 0 ) (5.164)
By expansion of N and D it follows that

[Re(D)2—[Re(N)J? = 4r(2—cos 8h—cos 02h)
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This obviously satisfies (5.164) for r > 0. Thus the difference scheme
given by (5.161) is unconditionally stable. Performing similar analysis on
(5.162) we find that (5.162) is also unconditionally stable. The truncation
error of the formula (5.161) is given by

7, = Pl +r(px+p)l U;f;'—r(3§+3§)U,'fm (5.165)

Expanding each term on the right-hand side of (5.165) in the Taylor series
about (Ih, mh, nk) and using (5.162) we get
kT = % (32U,"'m 82U,’jm) k? (33U aU

l,m I,m 0k2 h?
axdt  dyor) 2k 8x3t1+6y6t2)+( +F)

(5.166)

which will tend to zero if (k/h) = 0 as h — 0. By diminishing 4 and k such
that r is constant, the leading term of (5.166) would be of first degree in A,
all other terms being of higher order. By a similar procedure, the truncation
error of (5.162) is obtained as

Kk (azu,fm +azu,rgm)_ 1 k2(33U,m L2y,

__in _ im 1,m k24 h2
9xdt  dyor) 2 h\TxoZ 3y 8r2)+0( +h)

k-'Tr

Im

(5.167)

The leading terms of (5.166) and (5.167) have opposite signs. Averaging the
results of the schemes (5.161) and (5.162), we get difference methods which
have truncation error of 0(k2+h2).

Let 4" and ;" be the solution of the difference schemes (5.161) and
(5.162) respectwely Furthermore, let the solutions u, and u,"‘ also satisfy
the initial and boundary conditions (5.153). Then, the solution u"+l at any
time level (n+1) may be given by

urtl = (u"'+l +upirtt) (5.168)

The values u; %! can be calculated explicitly using (5.161). In this case cal-
culations proceed from the nodal point nearest to the boundaries x = 0
and y = 0 in a sequence of increasing / and m. The needed values of u}*! |
u?, and w7, . will be known. In a similar manner u; x+! can be calculated
explicitly from (5.162) beginning at the boundaries x = 1, y = 1 moving in
a sequence of decreasing /and m. In equatlons (5.161) and (5.162) the
values u;"! and u],;»*! for one step become }’,, and u;," for e next step.
These results now may be used in (5.168) to compute u"“.

The DuFort-Frankel scheme for two space dlmensxons can be written as

( 7 _;_ 72‘) uptl = r(32482—289) uy . (5.169)
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This is an unconditionally stable scheme and the truncation error is given by
2

k-'Tp, =0 (k2+h3+(l;—) ) (5.170)

“which tends to zcro if k/h—> 0 as h — 0,k - 0. In order to apply the
- scheme (5.169) to (5.152) we take u}, from the initial conditions and the
values u], are generally obtained from a two level difference scheme.

Example 5.4 Solve the initial boundary value problem

ou _ O Pu
dt  Jdx* dy?
u(x, y, 0) = cos ?cos‘%—’ -l<sxy<lLt=0

u=20 x=4+1y=411¢:>0
using the second order method ’

uptl ="(1 _4’)“,':,,,+’(“1"+1,m+“7-1,m+“:",m+1+“;',m-|)
with h= 3 and r = .
. The grid points are
xx==xIh 0<I<M+l], h=1/(M+1)
Ym=xmh, O0<m<M+1l, h=1/(M+1)
th nk, n=20,1,2, .., k>0

On account of symmetry, we need only consider one eighth of the square.
The initial and boundary conditions become

u® = cos lmh cos mmh
Lm 2 2
Uhir0 = Yompr =0
where M =1
For r = —é—-, the difference method becomes
1
R “7.:1 = T(u;lﬂ,m +u?—l.m +u;l,m+l +u;‘.m—l +2u7,m)
" We havé®
1
n= o’ u;,m = ? (u?+|.m +u?—l.m +u?,m+l +u?,m—l +2u2m)
1

0 0 0 0 0
(o +12y o tup,+ug 1+ 2ug o)

I=O’m=0’u(‘)'o= ?



